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Sirtuins are a family of NAD�-dependent protein deacety-
lases/deacylases that dynamically regulate transcription,
metabolism, and cellular stress response. Their general positive
link with improved health span in mammals, potential regula-
tion of pathways mediated by caloric restriction, and growing
links to human disease have spurred interest in therapeutics
that target their functions. Here, we review the current
understanding of the chemistry of catalysis, biological tar-
gets, and endogenous regulation of sirtuin activity. We dis-
cuss recent efforts to generate small-molecule regulators of
sirtuin activity.

Accumulating data indicate that lysine acetylation is a prev-
alent regulatory mechanism of protein function, with thou-
sands of acetylated proteins identified by mass spectrometry
(1–3). Sir2 (silent information regulator 2 or sirtuin) protein
deacetylases are a class of evolutionarily conserved enzymes
that function in critical cellular processes such as transcription,
DNA repair, metabolism, and stress resistance (4). Among the
major classes of lysine deacetylases, the sirtuins utilize a unique
catalytic mechanism that consumes NAD�, providing a direct
connection between protein deacetylation and central meta-
bolic pathways. There are seven human sirtuins (SIRT1–7),
each with diverse subcellular localization and protein sub-
strates (5). SIRT1–3 display robust deacetylation activity,
whereas recent reports implicate SIRT5 as a protein desucciny-
lase and demalonylase (6). Thus, sirtuins can be considered
deacylases. The activities of several other human sirtuins are
unsettled. SIRT6 and SIRT7 displayweak deacetylase activity in
vitro, and SIRT4 was reported to harbor ADP-ribosyltrans-
ferase activity (7, 8). Structural analysis of the sirtuin family
members reveals a conserved catalytic core composed of two
subdomains, a Rossmann fold domain at one end and a smaller,
more variable zinc-binding domain at the opposite end (Fig. 1).
The two domains are connected by several loops that form a
binding cleft for the nicotinamide and ribosemoieties ofNAD�

and the acyllysine substrate. Several invariant amino acids are
located in the cleft and are responsible for substrate binding
and catalysis. The varying hydrophobicity and charge distribu-

tion of the acyl-substrate binding cleft allow for varied substrate
selectivity among the different human sirtuins (6, 9). Given
their regulatory role in transcription, metabolism, and genome
maintenance, sirtuins are desirable targets for therapeutic
development. In this minireview, we highlight the current
molecular understanding of the chemical mechanism, regula-
tion, and substrate selectivity of sirtuins.

Unique Chemistry

Sirtuins catalyzeNAD�-dependent deacetylation of acetyl-
lysine, resulting in the production of deacetylated lysine, nic-
otinamide, and 2�-O-acetyl-ADP-ribose (OAADPr)3 (Fig. 2)
(10). Kinetic and biochemical studies revealed that the enzyme
binds the acetyllysine substrate prior to NAD�. Nicotinamide
is cleaved from NAD� and is the first product released, fol-
lowed by deacetylated lysine and OAADPr (11). In aqueous
solution, non-enzymatic intramolecular transesterification
yields the predominant mixture of 2�-OAADPr and 3�-
OAADPr. The use of NAD� as a co-substrate distinguishes
sirtuins from other classes of protein deacetylases. Curiously,
SIRT6 is the only human sirtuin capable of tightly binding
NAD� in the absence of an acetylated substrate, suggesting that
SIRT6 might also function as an NAD� sensor, possibly with-
out active deacylation (8). Great interest lies in understanding
the coupling of NAD� consumption to the production of
OAADPr, ametabolite that exhibits signaling functions but has
been less studied (12). OAADPr was linked with decreased
reactive oxygen species levels, gene silencing, and ion channel
activation and was shown to block starfish oocyte maturation
(reviewed in Ref. 12). Several OAADPr-metabolizing enzymes
have been reported, including the NUDIX (nucleoside diphos-
phate linked to moiety x) hydrolases, ARH3 (ADP-ribosylhy-
drolase 3), andmacrodomain proteins (12). NUDIX hydrolases
cleave the pyrophosphate bond ofOAADPr, forming AMP and
2- and 3-O-acetyl 5-phosphate (Fig. 2). Human macrodomain
proteins are capable of hydrolyzing OAADPr, affording free
acetate and ADP-ribose (13). In lower organisms, some sir-
tuins and macrodomain proteins are genetically coupled
within the same operon or physically connected as fusion
proteins, providing evidence for an as-yet-unknown path-
way that involves sirtuins, macrodomain enzymes, and
OAADPr (13).
The initial chemical step of the sirtuin reaction involves

nucleophilic addition of the acetyl oxygen to C1� of the nicotin-
amide ribose, forming aC1�-O-alkylamidate intermediate (sup-
plemental Fig. 1). The mechanism of nucleophilic attack has
been subject to discussion, with SN1, concerted SN2, and disso-
ciative SN2-like mechanisms proposed (reviewed in Ref. 14). A
detailed study using kinetic isotope effects and computational
approaches suggested that the first step of the reaction pro-
ceeds via a concerted yet highly asynchronous substitution
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mechanism (15). Several biochemical studies support the for-
mation of the alkylamidate intermediate. These include nico-
tinamide base-exchange reactions (16) and 18O labeling studies
that provide evidence for the direct transfer of the acetyl oxygen
to the 1�-hydroxyl of OAADPr (17, 18). Utilization of acetylly-
sine analogs further demonstrated the existence of the alkyl-
amidate intermediate. Thioacetyllysine- and acetylazalysine-
containing peptides form stalled alkylamidate intermediates
when used as sirtuin substrates (19, 20). Upon formation of the
alkylamidate intermediate, the 2�-hydroxyl group of the NAD�

ribose is activated by a conserved active-site histidine (supple-
mental Fig. 1). The activated hydroxyl attacks the O-alkylami-
date carbon to afford a 1�,2�-cyclic intermediate (20). Recently,
the bicyclic intermediate was trapped and structurally
resolved by incubating co-crystals of SIRT5 and an H3K9
thiosuccinyl-peptide with NAD�, providing direct evidence
for the proposed catalytic mechanism (21). A base-activated
water molecule then attacks the cyclic intermediate, afford-
ing deacetylated lysine and OAADPr (supplemental Fig. 1)
(10, 17).

Although deacylation is thought to be the primary function
of human sirtuins, yeast Sir2 was first implicated as having the
capability to transfer ADP-ribose from NAD� to nucleophilic
amino acids on protein substrates (22). SIRT4 and SIRT6 have
also been reported to catalyze ADP-ribosyl transfer to gluta-
mate dehydrogenase and poly(ADP-ribose) polymerase 1,
respectively (7, 23). This activity is not robust and has been
subject to debate. Detailed kinetic characterization of the ADP-
ribosyltransferase activity of a yeast and bacterial sirtuin indi-
cated that ADP-ribosylation may be a low efficiency side reac-
tion (�0.1% of the deacetylation reaction) of sirtuins due to the
susceptibility of active site-bound ADP-ribose to nucleophilic
attack (24). Understanding the mechanistic details of sirtuin-
catalyzed reactions is an important step toward a complete
understanding of sirtuin function and in the development of
chemical tools to probe their biology.

Substrate Recognition and Acyl Group Specificity

A number of proteomics studies have greatly enhanced our
understanding of lysine acetylation as a global post-transla-

FIGURE 1. Representative structure of a human sirtuin (Protein Data Bank code 3GLR) bound to acetylated peptide and NAD�. Key locations for sirtuin
modulation are highlighted. Positive regulators of sirtuin activity are indicated in green, negative regulators are indicated in red, and regulators that can
activate or inhibit depending on the sirtuin are in yellow. Proposed activators include NAD� synthesis, Sirtris compound 11 (90) and other reported activators,
and phosphorylation of SIRT1. Inhibitors include cysteine nitrosylation, DBC1 binding SIRT1, pseudopeptidic inhibitors (95) and other small molecules,
nicotinamide, and sumoylation of SIRT1.

FIGURE 2. Substrates and products of the sirtuin-catalyzed reaction and potential fate of the product OAADPr. The unique use of NAD� as a co-substrate
distinguishes sirtuins from other deacetylase classes and provides a direct link to energy metabolism.
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tional modification regulating diverse cellular processes (2, 3,
25). The number of reported sirtuin targets is continually
increasing (Fig. 3). SIRT1 deacetylates a number of histone and
non-histone proteins, including, but not limited to, histonesH3
and H4 (26), p53 (27), NF-�B (28), phosphoglycerate mutase 1
(29), and peroxisome proliferator-activated receptor-� coacti-
vator 1� (PGC-1�) (30). SIRT3 is reported to deacetylate and
modulate the activity of several metabolic enzymes, including
ornithine transcarbamylase (31), long chain acyl-CoAdehydro-
genase (32), manganese superoxide dismutase (33), acetyl-
CoA synthetase 2 (34), and isocitrate dehydrogenase 2 (35,
36). With the recent expansion of the acetylome comes the
challenge of identifying the physiologically relevant sites and
the enzymes responsible for the addition and removal of
these modifications.
Protein Recognition—Although a full understanding of pro-

tein substrate selection is lacking, a number of reports have
addressed the amino acid sequence specificity of sirtuins. Initial
structural studies suggested that acetyllysine-peptide binding is
largely dominated by peptide backbone hydrogen bonds, rather
than through side chain interactions (37). Consistent with this
idea, Blander et al. (38) used an acetyllysine-peptide library and
concluded that SIRT1displayed no substrate specificity in vitro.
Different conclusions were reached when the specificity of
SIRT1 was probed by a combinatorial, one-bead, one-peptide
acetyl-peptide library (39) and by a mass spectrometry-based
deacetylation assay of peptide substrates immobilized on self-
assembled monolayers on gold slides (40). These results sug-
gested that SIRT1 specificity is largely context-dependent, in
which preference for an amino acid at a given position depends
on the presence or absence of a specific amino acid at an adja-
cent position. Smith et al. (9) used SPOT-peptide array analysis
andmachine learning approaches to determine that SIRT3 dis-

plays a preference for aromatic and basic residues surrounding
the acetyllysine while disfavoring negatively charged residues.
Additional crystallographic studies of Thermotoga maritima
Sir2 suggested that the first residue N-terminal to the acetylly-
sine and the second residue C-terminal to the acetyllysine play
significant roles in substrate binding (41). Such unbiased library
methods will be important to determine the substrate specific-
ity for other sirtuins, including SIRT4–7, which have few
known targets and possess extremely low deacetylase activity
on commonly used substrates.
Sirtuin-catalyzed ProteinDeacylation—In addition to acetyl-

CoA, other abundant acyl-CoAsmight serve as acyl donormol-
ecules for the post-translationalmodification of lysine residues.
Recent studies identified a series of acyl groups (propionyl,
butyryl, succinyl, malonyl, and crotonyl) as post-translational
modifications of lysine residues (Fig. 4) in histone and non-
histone proteins (6, 42–46). Mass spectrometric and biochem-
ical analyses identified propionyllysine and butyryllysine resi-
dues within histone H4 and on lysine 23 of histone H3 (42, 47).
Several acetyltransferases, including human p300 and CBP
(CREB-binding protein), Saccharomyces cerevisiae EsaI, and
some bacterial acetyltransferases, can catalyze lysine propiony-
lation and butyrylation (42, 43, 48). SIRT1–3 can catalyze
depropionylation and debutyrylation, but with varying efficien-
cies compared with deacetylation (43, 49). Mass spectrometry-
based proteomics studies recently identified succinyllysine,
malonyllysine, and crotonyllysine as previously unidentified
modifications of histone proteins in several eukaryotic cell
types (46, 50). Crotonyllysine was shown by chromatin immu-
noprecipitation analysis to be associated with active promoters
or enhancers in human somatic and mouse germ cell genomes,
suggesting a possible role in transcriptional control (50).

FIGURE 3. Subcellular localization of mammalian sirtuins and reported enzymatic activities, substrates/targets, and cellular functions. PPAR�, perox-
isome proliferator-activated receptor-�; PCAF, p300/CBP-associated factor; OTC, ornithine transcarbamylase; LCAD, long chain acyl-CoA dehydrogenase; GDH,
glutamate dehydrogenase; SDH, succinate dehydrogenase; pol, polymerase; CtIP, CTBP-interacting protein; DNA-PK, DNA-dependent protein kinase.
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Althoughmany of these newly described modifications were
reported for histone proteins, post-translational succinylation
and malonylation were identified and verified in several meta-
bolic enzymes from mammalian cells (6, 45). Furthermore,
these studies found that mitochondrially localized SIRT5 could
catalyze desuccinylation and demalonylation in vitro (6, 45).
Utilizing an HPLC-based assay, Du et al. (6) reported that the
catalytic efficiency for demalonylation and desuccinylation for
three separate peptide sequences was 29- to �1000-fold higher
than that for deacetylation, suggesting that SIRT5 functions as
an NAD�-dependent desuccinylase and demalonylase rather
than as a deacetylase. Isolation of O-succinyl- and O-malonyl-
ADPr confirmed that deacylation proceeds by the known sir-
tuin deacetylation mechanism. Deletion of SIRT5 appeared to
increase the level of succinylation on CPS1 (carbamoyl phos-
phate synthase 1) (6), which was previously reported to be a
target of SIRT5 (51). A crystal structure of SIRT5 bound to a
succinylated peptide revealed the structural basis for this acyl
group preference. The carboxyl group of the succinyllysine
interacts via hydrogen bonds to Tyr-102 and Arg-105 in the
active site (6). These residues are conserved amongmanymem-
bers of the class III sirtuins, suggesting other class III sirtuins
might also function as desuccinylases and demalonylases.

Cellular Regulation of Sirtuin Activity

Depending on any one particular report, sirtuins can act as
either positive or negative regulators of pathways involved in
disease development. For example, among published studies,
SIRT1 and SIRT3 are implicated as tumor promoters or sup-
pressors (52, 53), although the vast majority of evidence sug-
gests that they improve health span in adult animals when their
expression is induced appropriately. Because sirtuins are
involved in a number of central physiological processes, endog-
enous signaling pathways likely control their activity in a tissue-
specific, signal-dependent, and temporally programmed man-
ner. The apparent duality of sirtuin function in disease might
simply stem from an incomplete understanding of sirtuin reg-
ulation and cellular context of function. Quite surprisingly,
there is relatively sparse detailed knowledge of endogenous reg-

ulatory mechanisms for sirtuins. A summary of the current
understanding is discussed below.
Transcriptional Regulation—The seven sirtuins are nuclear-

encoded and ubiquitously expressed in human tissues but dis-
play unique subcellular localization (5, 54). SIRT1, SIRT6, and
SIRT7 localize to the nucleus; SIRT3–5 localize to the mito-
chondria; and SIRT2 is found primarily in the cytoplasm (Fig. 3)
(5). Some evidence suggests the presence of full-length SIRT3
in the nucleus during cellular stress (55). Caloric restriction, the
only confirmed treatment to extend mammalian life span (56),
is known to enhance the transcription of SIRT1 and SIRT3, a
result that continues to spur exploration into the role of these
sirtuins in mediating the effects of caloric restriction (31, 57).
Two recent studies highlight the interplay between nutrient

availability and sirtuin transcription. In response to fasting,
SIRT1 expression is increased by cAMP response element-
binding protein, a known inducer of gluconeogenic genes.
Increased SIRT1 protein levels result in deacetylation and acti-
vation of PGC-1�, a known regulator of genes involved inmito-
chondrial biogenesis, thermogenesis, reactive oxygen detoxifi-
cation, and gluconeogenesis. Activation of PGC-1� by SIRT1
turns on the expression of a number of catabolic proteins in
metabolism. In response to refeeding, carbohydrate response
element-binding protein binds to the promoter of SIRT1 and
decreases its transcription, serving as a molecular switch to the
anabolic state (58). Other recent studies show that the tran-
scription of SIRT3 is induced by PGC-1� inmuscle cells, brown
adipose, and hepatocytes through binding to an estrogen-re-
lated receptor-binding element in the SIRT3 promoter region
(59, 60). The mitochondrial metabolic reprogramming activi-
ties of PGC-1� may bemediated through increased SIRT3 pro-
tein levels. A unique cross-talk among sirtuins is suggested, as
nutrient status leads to increased SIRT1 expression, which
deacetylates and activates PGC-1�, ultimately leading to the
induction of SIRT3 transcription.
Post-translational Modifications and Complex Formation—

The highly conserved catalytic core of human sirtuins is sur-
rounded by variable N- and C-terminal extensions, which
appear to act as regulatory regions that harbor sites for post-
translational modification and act as docking regions for pro-
tein complex formation.
Phosphorylation sites have been identified on all human sir-

tuins, but the functional impact has been investigated only for
SIRT1 and SIRT2. Independent studies report multiple phos-
phorylation sites located in the N- and C-terminal domains of
SIRT1 and implicate different kinases in regulating SIRT1
activity, including DYRK (dual specificity tyrosine phosphory-
lation-regulated kinase), JNK1 (c-Jun N-terminal kinase 1),
cyclin B/Cdk1 (cyclin-dependent kinase 1), and PKA (61–63).
These phosphorylation events are thought to activate SIRT1,
perhaps through inducing allosteric conformational changes;
however, the detailed mechanism is unknown. A recent study
identified a cAMP-dependent phosphorylation at Ser-434 of
SIRT1 that increased deacetylase activity (63). Phosphorylation
of Ser-434 is thought to reduce the Km for NAD�, resulting in
increased SIRT1 catalysis. SIRT2 is phosphorylated at Ser-331
and Ser-335 within the C-terminal region. Phosphorylation of
Ser-331 is catalyzed by cyclin-dependent kinase and inhibits

FIGURE 4. Structures of known acyl modifications found on lysine
residues.
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SIRT2 activity through an unknown mechanism, whereas the
kinase and function of phosphorylation of Ser-335 are not
known (64).
Additional post-translational modifications of SIRT1

include sumoylation, methylation, and transnitrosylation (65–
67). Through an NO-dependent reaction, nitrosylation occurs
at key cysteine residues in the zinc-binding domain of SIRT1
(Fig. 1). Similarly, oxidative stress and accumulation of the lipid
peroxidation product 4-hydroxynonenal result in the covalent
modification of SIRT3 by 4-hydroxynonenal at cysteine 280
within the zinc-binding domain (68). Proper zinc coordination
is necessary for sirtuin structural integrity and catalysis (69);
thus, nitrosylation and carbonylation limit zinc binding and
reduce activity.
In addition to post-translational modification, protein com-

plex formation may play an important role in regulation of sir-
tuin activity. Many histone-modifying proteins are commonly
found in complexes that regulate their function (70). Specifi-
cally, class I and II histone deacetylases exist almost exclusively
as components of large multiprotein complexes. Curiously, the
formation of such regulatory complexes among mammalian
sirtuins remains enigmatic. A few endogenous protein-binding
partners of SIRT1 are thought to regulate its function. AROS
(active regulator of SIRT1) was reported to bind to amino acids
114–217 in the N terminus of SIRT1 and stimulate deacetyla-
tion of p53 in vivo, potentially by inducing a conformational
change that places SIRT1 in a more favorable catalytic confor-
mation (71). Binding of the inhibitory protein DBC1 (deleted in
breast cancer 1) to the catalytic domain of SIRT1 results in
repressed deacetylation of p53 in vivo and in vitro (72, 73). The
leucine zipper motif of DBC1 binds to the catalytic core of
SIRT1, but not to other sirtuins, andmay block substrate access
to the active site. A number of other protein-binding partners
of SIRT1 and SIRT3 were identified in a study using affinity
purification of FLAG-tagged sirtuins followed by mass spectral
identification. Whether these proteins act as regulatory factors
or substrates has not been determined (74).
A recent proteomics and bioinformatics study revealed that

SIRT7 interacts with several nucleolar localized chromatin-
remodeling complexes, including RNA polymerase I and
upstream binding factor involved in ribosomal DNA transcrip-
tion (75). The results suggest that SIRT7-containing protein
complexes are critical during ribosomal transcription and
reveal an important role for this sirtuin, which lacks robust
deacetylation activity in vitro. Understanding the function of
interacting proteinsmight provide insight into the low deacety-
lase activity of some sirtuins such as SIRT4, SIRT6, and SIRT7,
which might require activation or targeting to function. The
development of molecular tools to capture active sirtuin com-
plexes in cells could enable the identification of proteins
involved in sirtuin regulation and activity (20, 76).
NAD� Levels—The levels of intracellular co-substrate

NAD� and product nicotinamide are thought to influence sir-
tuin activity. Nicotinamide is a product inhibitor of the
deacetylation reaction and is used often as a general sirtuin
inhibitor. At high concentrations, nicotinamide enters the
active site and reacts with the alkylamidate intermediate,
reforming NAD� and preventing the forward reaction (Fig. 2)

(16). The unique catalytic consumption ofNAD� indicates that
sirtuins might be sensitive to changes in intracellular NAD�

concentration. Increasing NAD� synthesis through the NAD�

salvage pathway might be a cellular mechanism to increase
sirtuinactivity. Indeed, enzymes thatgenerateNAD�affect sirtuin
activity (reviewed in Ref. 77). Nicotinamide phosphoribosyl-
transferase (NAMPT) catalyzes the addition of 5-phospho-
ribosylpyrophosphate to nicotinamide to form NMN (78).
NMN adenylyltransferase then converts NMN to NAD�.
There are three isoforms of NMN adenylyltransferase that
localize to the mitochondria, nucleus, and cytoplasm, suggest-
ing that there may be compartmentalized control of NAD�

synthesis and therefore subcellular control of sirtuin activity
(79). Inhibitors of NAMPT have been used to decrease SIRT2
activity in the treatment of acute myeloid leukemia, providing
evidence that modulating NAD� concentration might be an
effective means to regulate sirtuins (80). Furthermore, AMP-
activated kinase (AMPK) is known to activate NAD� synthesis
through stimulated transcription of NAMPT. AMPK is stimu-
lated by decreases in cellular energy status, nutrient and oxygen
deprivation, and increased energy expenditure (81).

Therapeutic Potential: Small-molecule Modulation of
Sirtuin Activity

Activators—Sirtuins are pharmaceutical targets due to pur-
ported roles in cell survival, fatty acid metabolism, glucose
homeostasis, genomic stability, and oxidative stress reduction.
Compounds that activate SIRT1 could have positive roles in
regulating metabolism and influencing health span. A number
of small-molecule compounds are reported to increase the
deacetylase activity of SIRT1, including the naturally occurring
polyphenol resveratrol, as well as a series of small-molecule
compounds developed by Sirtris Pharmaceuticals, Inc. (Fig. 1)
(82, 83). Although these reports have sparked great interest in
the promise of sirtuin activation, other in vitro and in vivo stud-
ies have disputed the direct link to SIRT1 activation (reviewed
in Ref. 84). Resveratrol is a known pleiotropic molecule, and
some laboratories have reported that resveratrol activates the
AMPKpathway, perhaps through direct inhibition of phospho-
diesterase 4, ultimately leading to stimulated SIRT1 activity by
increasing the cellular NAD� concentration (85, 86). A recent
study utilizing a tamoxifen-inducible SIRT1 knock-out in adult
mice found that resveratrol improved mitochondrial function
in skeletal muscle and induced a shift toward more oxidative
muscle fibers in wild-type mice, but not in adult SIRT1 knock-
out mice fed the same high fat diet (87). The results strengthen
the physiological link connecting the positive effects of resvera-
trol to a SIRT1-dependent process. However, the exact molec-
ular targets of resveratrol that influenceAMPK- and SIRT1-de-
pendent pathways remain unresolved.
The controversy surrounding resveratrol and SIRT1 origi-

nated from the observation that resveratrol could activate
SIRT1 only when a fluorescently tagged peptide substrate was
utilized in high throughput deacetylation assays (88, 89). More
recently, isothermal titration calorimetry and tryptophan fluo-
rescence analysis suggested that several small molecules devel-
oped by Sirtris do indeed bind directly to SIRT1with high affin-
ity (90). From in vitro biochemical studies, it appears that
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validated SIRT1 activators increase the binding affinity for
acetylated peptide and that the nature of the substrate, includ-
ing the amino acid sequence and/or the hydrophobic fluores-
cent tag, is an important factor for activation (84, 88, 90).
Inhibitors—A number of small-molecule and mechanism-

based sirtuin inhibitors have been developed. Several studies
have identified compounds specifically targeting either SIRT1
or SIRT2 (91–93). A structure-based approach for identifying
novel isoform-specific inhibitors utilized the peptide-binding
grove within the crystal structures of SIRT2, SIRT3, SIRT5, and
SIRT6 (92). Characterization of several hits identified two com-
pounds that selectively inhibited SIRT2 with low micromolar
IC50 values (92). Employing a different strategy, a number of
pseudopeptidic mechanistic-based inhibitors using thioacylly-
sine have been developed for SIRT1, SIRT2, and SIRT5 (Fig. 1)
(94–97). Biochemical, kinetic, and structural analyses suggest
that the thioacetyllysine act as a mechanistic inhibitor by stall-
ing at the catalytic intermediate after nicotinamide cleavage
(Fig. 2) (19, 98). Use of peptide-like inhibitorsmight offer added
specificity and affinity. A pseudopeptidic backbone might
increase bioavailability and decrease the potential for enzy-
matic degradation. Structure-based computational approaches
to identify pseudopeptidic inhibitors provide an exciting new
tool to design tight-binding bioavailable inhibitors that are iso-
form-specific. A detailed review of SIRT1 activators and inhib-
itors can be found in Ref. 99.

Concluding Remarks

Sirtuins function to regulate diverse cellular processes, and
their unique consumption of NAD� directly links sirtuin catal-
ysis to metabolism and energy homeostasis. The expansion of
the acetylome and the characterization of newly discovered
acyllysine modifications, including succinylation and malony-
lation, broaden the cellular acylation landscape that is targeted
by the sirtuins. Human sirtuins are implicated in numerous
age-related diseases and, as such, have become pharmaceutical
targets for small-molecule modulation. However, the molecu-
lar role of sirtuins in disease progression is not always clear. A
full understanding of sirtuin functionwill be possible onlywhen
we have determined the complete range of their biochemical
and enzymatic activities, which includes analysis of acyl group
and target protein specificity. Although there has been consid-
erable focus on developingmodulators of SIRT1 and SIRT2, the
importance of SIRT3 in metabolic reprogramming of mito-
chondria was revealed in a recent quantitative proteomics
study (100). This study provided evidence that SIRT3 plays a
prominent role in adaption to caloric restriction through coor-
dinate deacetylation of proteins involved in diverse pathways of
metabolism and mitochondrial maintenance. These results
suggest that small-molecule modulators that promote SIRT3-
dependent functions could mimic some of the positive effects
on health span induced by caloric restriction (35). A deeper
understanding of sirtuin catalysis and regulation will be essen-
tial to rationally design the next generation of isoform-specific
therapeutics for the treatment of metabolic and age-related
diseases.
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